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1 Introduction

Many applications call for a rapid evaluation of discrete convolutions of the form

(f ∗ g)(n) ≡
∑
k∈Zn

f(k)g(n− k) =
∑
k∈Zn

f(n− k)g(k) (1)

where f and g are real or complex functions on a regular lattice Zn. We shall be dealing primarily
with the most interesting and challenging 3D case (n = 3).

Applications where convolutions (1) arise include (a) digital signal/image processing/ filtering
by time-invariant (translation-invariant) systems and (b) finite difference analysis of boundary value
problems. In the latter category, two related methodologies are particularly noteworthy. The first
one, put forward and thoroughly studied by Ryaben’kii, Tsynkov and others [1, 2], is known as the
method of difference potentials and can be viewed as a discrete analog of the Calderon projection
operators. The second one, boundary algebraic equations (BAE), is at least 50 years old (Saltzer
[16]) and is a discrete analog of first- or second-order Fredholm boundary integral equations for
potential problems (Martinsson & Rodin [15]).

The primary objective of this work is to develop a Fast Multipole Method on a Lattice (FMML)
for computing convolutions (1). The “source nodes” where f is nonzero are assumed to be confined
to a finite box containing a fragment of the lattice; this box is recursively subdivided into a nested
sequence of smaller boxes that form a tree structure (quadtree in 2D, as each box gets subdivided
into four children.) In contrast, g does not have to have a bounded support; in boundary value
problems, it will represent discrete Green’s function.

The general principles of FMML are the same as in the well-known continuous case [3]: “far-
field” contributions to the potential due to remote sources are computed via a multipole expansion,
while the near field is computed directly. The multipole moments are computed in the course of the
upward pass over the hierarchical structure of boxes. Then these multipole moments get converted
into local field expansions in the course of the downward pass from the root box to the finest level.

The ingredients of this computational procedure are worked out below and include (i) the
multipole expansion; (ii) far-field-to-far-field translation (needed in the upward pass); (iii) far-field-
to-local-field and local-to-local-field translation formulas (needed for the downward pass).

A remarkable feature of the resultant algorithm is its universality: it can be applied to any
given convolution kernel g (discrete Green’s function in applications to boundary value problems),
provided that it is translation-invariant and that its finite differences on the lattice decay rapidly
enough for the far-field multipole expansion on the lattice to be convergent.

∗The work of this author was supported by the US Army Research office, grant # W911NF-11-1-0384.
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Several “kernel-independent” (“black-box”) multipole techniques have already been proposed.
In the method due to Ying et al. [5], the multipole expansions of the kernel are replaced with a
continuous distribution of an equivalent source density on a surface enclosing a given box. This
equivalent density is found by matching its potential to the potential of the original sources at a
surface in the far field. This approach builds up on the earlier ideas of Anderson [7] and Makino [6]:
the use of surface potentials or, alternatively, potentials due to fictitious “pseudoparticles” instead of
the multipole expansion. Fong & Darve combined continuous SVD with low-rank approximation of
the kernel by Chebyshev polynomials (see [4] and references therein) to produce a FMM. Martinsson
[9] uses polyharmonic approximations of the kernel to construct a fast multipole method.

2 The Fast Multipole Method on a Lattice

The fast multipole algorithms (FMA) are usually frequency dependent. If the dimension of the
object is above 0.5 wavelengths, MLFMA (Multi-level FMA) works properly, since it uses the
dominant propagating wave in the translation process [10]. But if the object size is below 0.1
wavelengths, LFFMA (Low Frequency FMA) is employed [11]. In between, MFFMA (Mixed-form
FMA) is used to analytically connect multipole and plane wave expansions [12].

The most important step is that the source-field interaction kernel or the Green’s function
G(rji) must be cast into the following translation form:

G(rji) = βtjJ1(rjJ1) · ¯̄βJ1J2(rJ1J2) · ¯̄αJ2I2(rJ2I2) · ¯̄βI2I1(rI2I1) · βI1i(rI1i) (2)

where

rji = rjJ1 + rJ1J2 + rJ2I2 + rI2I1 + rI1i (3)

as plotted in Fig. 1. βjJ1 and βI1i are column vectors called receiving and radiation patterns, respec-
tively. β̄J1J2 and β̄I2I1 are matrices (dense for low frequencies and diagonal for mid-frequencies)
converting incoming and outgoing waves between parent boxes and child boxes. They could be
considered as far-field-to-far-field or local-field-to-local-field transformations. ᾱJ2I2 is an outgoing-
wave to incoming-wave translator (O2I translator), or far-field-to-local-field translator. There are
316 O2I translators for 3D problems. But each time only outgoing waves from nonempty boxes in
the interaction list are translated. Mathematically, the addition theorem is used to generate this
translation format. Many FMA performance improvements can be realized by working out novel
translators.

1
rjJ

1 2
rJ J

2 2
rJ I2 1

rI I

1
rI i

Figure 1: FMA decomposition of the vector rji. 2D rendition for simplicity.
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For the scattering problem, the object size is usually comparable to the wavelength. Hence,
MLFMA is employed. The free space Green’s function can be decomposed into the integration of
plane waves to all directions. From the addition theorem [13], the free space Green’s function can
be generally represented by

eik|D+d|

4π|D + d|
=

ik

4π

∞∑
l=0

(−1)l(2l + 1)jl(kd)h
(1)
l (kD)Pl(d̂ · D̂) (4)

where jl(x) is the spherical Bessel function of the first kind, h
(1)
l (x) is the spherical Hankel function

of the first kind, Pl(x) is the Legendre polynomial, and d < D. It is further derived into a
diagonal translation format by introducing a plane wave integration, truncating the summation,
and exchanging the order of integration and summation

eik|D+d|

4π|D + d|
=

ik

4π

∫
dΩeik·dαL(Ω,D) (5)

where
∫
dΩ represents the integral over a unit sphere. The far-field-to-local-field translator αL(Ω,D)

is defined as

αL(Ω,D) =
1

4π

L∑
l=0

il(2l + 1)h
(1)
l (kD)Pl(k̂ · D̂) (6)

The term eik·d is a combination of far-field-to-far-field transformations, local-field-to-local-field
transformations, radiation patterns and receiving patterns. In the conventional BEM, FMA was
applied to sources represented by RWG basis over triangular patches [14].

β(k̂) =

∫
S
eik·r

′
S(r′)dr′ (7)

On a lattice, the sources are all point sources. Hence, the radiation pattern setup becomes much
simpler.

β(k̂) =

∫
S
eik·r

′
δ(r′)dr′ = eik·rIi (8)

Discretization of the integral in (5) results in a diagonal translation form. However, because the
Green’s function is decomposed into plane waves, essentially we are not using multipoles except for
the translator. k̂ is sampled over a unit sphere for all angles. The list of β(k̂) forms the vector of
(8).

Because the size of the box doubles when transformations are performed from a lower level of
the FMA oct-tree to the parent level, the bandwidth increases correspondingly. Hence, denser data
sampling is needed at parent levels. To avoid unnecessary memory at lower levels, interpolation
schemes are used during the upward tree browsing process. Hence, (2) is modified by adding the
interpolation matrix ¯̄I

G(rji) = βtjJ1(rjJ1) · ¯̄I
t · ¯̄βJ1J2(rJ1J2) · ¯̄αJ2I2(rJ2I2) · ¯̄βI2I1(rI2I1) · ¯̄I · βI1i(rI1i) (9)

The error of this mid-frequency MLFMA is controlled by the truncation number L in the translator
and the buffer zone. Because of the computer’s limited numerical precision, L cannot be infinitely
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large. A lot of work has been done to refine the estimation of L for the best possible accuracy. A
very nice estimation is using the following excess bandwidth equation:

L ≈ kd+ 1.8d
2/3
0 (kd)1/3 (10)

where d0 = log(1/ε). This method is very effective for mid-frequency applications since the accuracy
could reach 10−5 easily when the box size is large compared to the wavelength. However, when the
frequency is low, even the best excess bandwidth equation could not improve the error too much.

The near field interaction is computed directly. The conventional MoM method could be applied
to this part to collect the contributions from near neighbors.

3 The Lattice Green Function for the Scalar Wave Equation in
3D

The linear scalar wave equation (the Helmholtz equation) in 3D is

∇2u+ k2u = f, (11)

where k is a given parameter (the wavenumber), f (the source) is a given function of coordinates,
and u is an unknown function to be found.

The Green function G(r) for (11) is, by definition, generated by the delta-source f = δ(r); i.e.

∇2G+ k2G = δ(r), (12)

G has the well known analytical form

G(r) =
exp(ikr)

4πr
(13)

We now consider discrete analogs of (11), (13). Let (12) be approximated by the standard seven-
point flux-balance scheme on a uniform grid with a size h (for simplicity, the same in all three
directions):

(6−k2h2)gix+1,iy,iz−gix−1,iy,iz−gix,iy+1,iz−gix,iy−1,iz−gix,iy,iz+1−gix,iy,iz−1 =
δ(ix, iy, iz)

h
(14)

where g is the lattice Green function (LGF), ix, iy, iz are integer indexes, and δ in this expression
is the discrete delta-function (the Kronecker delta in 3D).

There are at least two general ways to compute the LGF: Fourier analysis and finite difference
solutions. A detailed exposition for the Laplace equation has been given by Martinsson & Rodin
[9, 8, 15]; for the wave problem, see [17].

Fourier analysis is quite involved and must be performed with great care. For our purposes, a
more straightforward route is sufficient. The finite difference problem (14) for the Green function
can be solved directly, with the continuous Green function imposed as a boundary condition on a
large enough cube [−M,M ]3. Such a direct solution can be efficiently obtained via FFT, as done
for the Laplace equation by Kansa et al. [18].

An example of LGF for λ = 1 (k = 2π) and h = 0.1 is shown in Fig. 3 (1D plot) and Fig. 3
(surface plot).
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Figure 2: a 1D plot (y = z = 0, x varies) of the LGF for λ = 1, h = 0.1.

Figure 3: A surface plot (z = 0, x, y vary) of the LGF for λ = 1, h = 0.1.
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4 Conclusion

The proposed Fast Multipole Method on a lattice has the following salient advantages:

• Close-to-optimal (apart from the logarithmic factors) asymptotic number of operations with
respect to the number of grid nodes.

• In applications to finite difference analysis of boundary value problems, the method paves the
way for the efficient solution of boundary algebraic equations (Martinsson & Rodin [9, 15]]),
or, alternatively, equations of difference potentials – a discrete analog of Calderon projections
(Ryaben’kii & Tsynkov [1, 2]). The latter method and its computational efficiency were
recently analyzed in detail for problems involving exterior magnetic fields of fusion devices
[18].
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